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Abstract

Mesh refinement is desirable for an advantageous use of the finite-difference time-domain (FDTD) solution method

of Maxwell�s equations, because higher spatial resolutions, i.e., increased mesh densities, are introduced only in sub-

regions where they are really needed, thus preventing computer resources wasting. However, the introduction of high

density meshes in the FDTD method is recognized as a source of troubles as far as stability and accuracy are concerned,

a problem which is currently dealt with by recursion, i.e., by nesting meshes with a progressively increasing resolution.

Nevertheless, such an approach unavoidably raises again the computational burden. In this paper we propose a non-

recursive three-dimensional (3-D) algorithm that works with straight embedding of fine meshes into coarse ones which

have larger space steps, in each direction, by a factor of 5 or more, while maintaining a satisfactory stability and

accuracy. The algorithm is tested against known analytical solutions.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The finite-difference time-domain (FDTD) solution method of Maxwell�s equations is a widely used

numerical technique in computational electromagnetics [1], both in the two-dimensional (2-D) and

three-dimensional (3-D) cases. Its first formulation goes back to Yee [2]. One writes centered finite

difference analogues of the six partial differential equations in the Maxwell�s curl equations that, due to

the particular choice of the fields� sampling points, are second-order accurate both in space and in time.

Examples of these can be found in [1–4]. As an initial value problem (IVP), the FDTD method is

subject to a stability condition, the so-called Courant–Friedrichs–Lewy (CFL) condition [3,5]. Also, the
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FDTD method needs to be supplemented by a suitable boundary condition (BC) on the outer surface

of the computational domain, to overcome finite memory allocation capabilities. To this end various

authors developed special BCs [6–13] which, in the FDTD community, are known as absorbing

boundary conditions (ABCs) or radiation boundary conditions (RBCs). They permit a mesh truncation

with a minimum amount of reflection back into the computational domain. In our work we use second-

order Higdon BCs [10,11]. Nowadays, almost invariably, the so-called ‘‘pulsed’’ FDTD method is

adopted, that makes use of compact excitation pulses [14,15]. An in-line semidiscrete Fourier transform

of the system response is updated at every space sampling point. It is commonly retained that only
analyses at frequencies corresponding to wavelengths no shorter than 10 times the space sampling size

are meaningful [1,4]. But when, at a given frequency, the structures� electrical density augments,

wavelengths are unavoidably shortened. Many efforts then have been made to develop local mesh re-

finement algorithms for the FDTD method. A brief description of the various approaches can be found

in [16]. A reported problem of the various attempts is their tendency to become unstable [16–19]. A

common receipt proposed to overcome stability problems is to nest meshes with progressively increasing

resolution, say by a factor of 2 each time. Obviously, such an approach further raises the computa-

tional burden, a thing we wanted to avoid.
Our effort with the present paper has been to develop a mesh refinement algorithm for the FDTD

method which is as economic as possible, both in terms of memory request and in the number of floating

point operations. To this end we devised a merging, or coupling, scheme between two FDTD meshes, one

of them having an higher resolution by a factor of 5–15 than the other. This results in the algorithm de-

scribed in Section 2. In the next we will refer to it as the mesh refinement algorithm or subgridding algorithm.

In Section 3 we demonstrate that instability is intrinsic to every mesh refinement and possibly it does not

depend on a particular merging scheme. Having recognized the source of instability, in Section 4 we devise

a particular technique that permits us to control its onset until the FDTD run has been completed, even
though spatially large domains are considered and with satisfactorily accurate results. The technique is

based on a spatial-differentiation low-pass filter which is analytically justified. It requires only a certain

number of extra floating point operations, but no extra memory allocation. In Section 5 we report ex-

perimental numerical results supporting the validity of the algorithm we propose. We point out that it

works with straight embedding of high resolution meshes, without resorting to recursive procedures.
2. Mesh refinement algorithm

Starting with a 3-D spatially uniform grid of Nx � Ny � Nz cubic Yee cells of edge size d, we assume a

corresponding time-step s, to get a space-time mesh G, such that the CFL stability condition,

s6
dffiffiffi
3

p
c0

is fulfilled, with c0 the light speed in vacuo. In particular we always take s ¼ 0:5d=c0. We refer to G as the

coarse grid. In space, its outer surface S is that of a parallelepiped made of single Yee cell faces.

We now assume that each one of a subset of nx � ny � nz contiguous cells in G – provided that none of

their faces lies on S – is being refined, giving rise to R3 extra cubic sub-cells with an edge size of d=R, R a
whole number. By introducing a time step of s=R, we can think at all of the R3 � nx � ny � nz extra cubic

sub-cells as forming a new space-time mesh G0, which we refer to as the fine grid.

Note that the same space-time steps ratio holds for both G and G0, so we do not bother about different

CFL conditions. We call R the mesh refinement factor and assume it, without loss of generality, to be an odd

number too. In this paper we are concerned with values of R from 5 to 15.
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In space, the outer surface S0 of G0 is made of single sub-cell faces and it is strictly contained in the

volume bounded by S, so we can also say that the fine grid is embedded in the coarse one. We always

assume that S0 lies in free space (air), structures being inserted strictly inside S0, on the fine grid, or strictly

outside S0, on the coarse one. S0 is the interface across the coarse and fine domains and plays a major role

in merging, or coupling, G and G0. Whatever scheme one chooses to make them interact, the aim is always

to get a consistent numerical solution across S0.

By ~E, ~H we indicate the electric and magnetic vectors of G and by ~e, ~h those of G0. Single precision

floating point variables are allocated for the fields components. Fig. 1 depicts a coarse/fine transition for a
part of S0 lying in the yz-plane. The plane views indicated by the letters a, b, c, d, are extracted by dis-

placements of one half a sub-cell edge size along the z-axis. Fig. 1 shows up clearly that there is no re-

ciprocal space shift between the coarse and fine grids and, as a consequence, the interface S0 contains

sampling points of both ~E and ~e components which are tangential to S0 itself. In what follows we shall

indicate such components, collectively, by E� and e�. Also, there are some special~h components, tangential

to S0 but shifted ðRþ 1Þ=2 fine space-steps from S0 itself (and R fine space-steps away from each other),

which would correspond to similar ~H components if the coarse grid were extended one more cell inside S0.

We use such special components, which we henceforth shall collectively indicate by h�, to update the
tangential E� components on S0. This is the main reason why we choose R to be an odd number. Our

FDTD time iterations are composite and each one of them consist – see Fig. 2 for a schematic diagram

with R ¼ 5 – of a single spatial scanning for the ~E, ~H fields (rounded boxes), which we call a coarse sweep,

followed by R consecutive spatial scannings (numbered from 0 to R� 1) for the ~e, ~h fields (small boxes),

which we call fine sweeps. During a sweep, electric and magnetic field component values at every space

sampling point are updated, according to second-order accurate finite difference approximations of

Maxwell�s curl equations. If the algorithm is currently executing the pth fine sweep since it started at p ¼ 0,

then it has already completed pmodR fine sweeps after the last executed coarse one. The latter, on the
other hand, is the P th coarse sweep since the algorithm started at P ¼ 0, with P ¼ ðp � pmodRÞ=R. We

assume a reciprocal time shift of sðR� 1Þ=2 between the coarse and fine grids (sshift), so that on the time

axis, we have

tE ¼ Ps; tH ¼ tE þ
1

2
s; te ¼ p

s
R
� sshift; th ¼ te þ

1

2

s
R
;

the extra shifts between tE, tH and te, th being intrinsic to the FDTD algorithm. Note that we are using

different time-steps for the coarse and fine domains, what shortens the overall duration of the FDTD runs.

On the other hand some authors [19] use the same time-step, which is that of the fine grid, for stability

concerns. Before a coarse sweep – say the P th in Fig. 2 – is started, we store first the current E� values in
suitable memory locations. After the coarse sweep has been executed, we have new E� values too, the stored

ones now corresponding to the ðP � 1Þth. During the R successive fine sweeps – from p ¼ PR onwards in

Fig. 2 (remember sshift) – we use the old and new E� values as base points in a linear time interpolation, to

get the e� values for each one of the fine sweeps. As can be seen from Fig. 2, for the first ðRþ 1Þ=2 fine

sweeps starting at p ¼ PR we have a true interpolation, but for the last ðR� 1Þ=2 ones we extrapolate

outside the time interval spanned by the old and new E� values. Being the e� sampling points onS0 spatially

denser than those of E�, as base points for the linear time inter/extrapolation we do not directly use a pair of

old and new E� values. Indeed, from four such pairs lying at the vertices of a square with edge size d, we fill
in, by means of a bilinear space interpolation, a matrix of R� R base points at every e� space location inside

the square�s perimeter. By moving the square at hand and calculating new R� R base points, we can cover

all of the e� space locations on the six faces ofS0. We thus have an ‘‘inflowing’’ information exchange, from

G to G0, marked by upward arrows in Fig. 2. What we are really doing here, is to impose a boundary

condition (BC) on S0 for the tangential electric field components in the fine domain. There would not be
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Fig. 1. Fields layout at a coarse/fine grid interface in the yz-plane when R ¼ 5.
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Fig. 2. Timing of the FDTD subgridding algorithm when R ¼ 5.
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any other mean to get those values via the difference equations of the Yee algorithm. An ‘‘outflowing’’

information exchange, from G0 to G, marked by downward arrows in Fig. 2, occurs when the h� subset of
values, calculated in the course of every Rth fine sweep (the last one of each series), is employed to update

the E� values when a coarse sweep is started. To this end, the last fine sweep h� values are first passed on
suitable ~H memory locations in G and then directly used in the successive coarse sweep.

To summarize, our basic FDTD subgridding algorithm – with a bidirectional coupling scheme between

G and G0 – is made of the following sequence of computing steps:

(a) Store the current h� values in suitable memory locations. This requires about 4� ðnxny þ nynz þ nxnzÞ � F
bytes of memory, where F is the size of a single field component variable. For us, F ¼ 4 bytes.

(b) Store the current E� values in suitable memory locations. This requires about the same amount of mem-

ory as step (a).

(c) Update the ~E values in G by using the appropriate set of finite difference equations. Notice that to get
the new E�s, use is made of the values stored in step (a). Add excitation signals, if any.

(d) Apply the chosen absorbing boundary conditions to the tangential ~E values on S to model an infinite

medium.

(e) Update the ~E Fourier transforms in G.
(f) Update the ~H values in G, including those normal to S0, by using the appropriate set of finite difference

equations. Add excitation signals, if any.

(g) Update the~e values in G0 by using the appropriate set of difference equations, but excluding the e� val-
ues on S0. Add excitation signals, if any.

(h) Calculate updated e� values by bilinear space interpolation and linear time inter/extra-polation. Note

that, to this end, the values stored in step (b) and calculated in step (c) are used.

(i) Update the~e Fourier transforms in G0.

(j) Update the~h values in G0 by using the appropriate set of finite difference equations. If this is the last fine

sweep, part of the values obtained here, and precisely the h� ones, will be copied in suitable memory

locations as prescribed by step (a).

(k) Repeat steps from (g) to (j) again for a total of R times.

(l) Repeat steps from (a) to (k).
The sequence from (a) to (k) represents an FDTD time iteration, those from (c) to (f) and from (g) to

(j) are a coarse and a fine sweep respectively. The overall number of FDTD iterations needed by a

program run depends on the spatial extensions of G and G0, and on the particular structures that are

modelled on them. Because we are using the pulsed FDTD method, we must wait until the excitation

signal response pulses have decayed at every sampling point and truncation of the semidiscrete Fourier

transforms is now permitted. All this, provided that the above algorithm has been rendered stable, a

matter we deal with in Section 4. As to the excitation signals, we use compact pulses on a time interval

ð0; T Þ of the type [14,15]:
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S1ðtÞ ¼
0; t < 0;

H 1� cos 2pt
T

� �� �3
; 0 < t < T ;

0; t > T ;

8<
:

which is a non-zero mean value smooth pulse, continuous in t ¼ 0 and t ¼ T with its first five derivatives, or

of the type

S2ðtÞ ¼
0; t < 0;

K 1� cos 2pt
T

� �� �2
sin 2pt

T

� �
; 0 < t < T ;

0; t > T ;

8<
:

which is a zero mean value smooth pulse, continuous in t ¼ 0 and t ¼ T with its first four derivatives. Both

H and K are normalization constants which here we choose such that the amplitude spectra of S1ðtÞ and
S2ðtÞ are 1 at their maximum. Moreover, T is set to 1=fa with S1ðtÞ and to 2=fa with S2ðtÞ, in such a way the
significant part of their amplitude spectra will embrace the value fa, the frequency of analysis. Choosing to

double T with S2ðtÞ is a small correction to compensate for the fact its amplitude spectrum vanishes when

f ! 0. To overcome problems with static fields of the type discussed in [15], in the next we will use S2ðtÞ.
3. Stability analysis of the mesh refinement algorithm

When grids with different space-time resolutions are interacting, fulfilling the CFL condition inside each
single grid is not enough for the overall stability of the FDTD algorithm. The CFL condition addresses the

initial value problem (IVP) only, i.e., for the wave propagation as if it took place in an unbounded spatial

domain. Special stability analysis is required when BCs are additionally imposed on the solution and one is

then faced with an initial boundary value problem (IBVP). In the FDTD method the BCs typically concern

with the modelization of an unbounded spatial domain and one speaks of ABCs or RBCs. A large literature

exists that analyzes the well-posedness and stability of a hyperbolic IBVP from an analytical and numerical

point of view, respectively [10,11,20–23]. All the various BCs proposed for the spatial truncation of the

FDTD computational domain must obey, more or less implicitly, to further stability criteria than the
simple CFL condition.

Undoubtedly, when grids with different space-time resolutions are coupled together one has to deal,

from a numerical point of view, with extra BCs at the grids� interface. In fact, field components values are

repeatedly exchanged across them, but with each grid having its own dispersion properties. For a Yee

FDTD mesh having cubic cells of edge size d and time step s, the following dispersion relation holds in an

homogeneous medium:

sin2 g
2

� �
¼ c0s

d

� �2

sin2 nx
2

� 	

þ sin2 ny

2

� 	
þ sin2 nz

2

� 	�
: ð1Þ

Phase velocity in the continuous limit is c0, g ¼ sx with x the angular frequency, ni ¼ dki ði ¼ x; y; zÞ with
k ¼ ðk2x þ k2y þ k2z Þ

1=2
the wave number. Graphs of (1) are depicted in Fig. 3 for the 1-D case: ny ¼ nz ¼ 0.

The lower curve refers to the original grid (the coarse one), the upper curve refers to a refined grid with

R ¼ 5, i.e. with a space step of d=R and a time step of s=R. For both, the same ratio c0s=d ¼ 0:5, satisfying
the CFL condition, has been chosen. In drawing the graphs, for the sake of clarity, only those parts of (1)

relevant for the discussion are plotted. Moreover, it is enough, due to the space-time discreteness, to

consider values of n, g in a range with endpoints given by the Nyquist limits of the sampling. That range

would be ½�p; p� for a single grid alone, but becomes ½�Rp;Rp� when grids with different resolutions are

compared. The dispersion relation of the coarse grid has, therefore, to be analytically extended beyond its

natural upper bound at n ¼ p by taking into account the ‘‘aliasing’’. The result is that negative slope parts
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Fig. 3. Dispersion curves of coarse and refined grids when R ¼ 5.
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appear now, corresponding to positive slopes on the refined grid. We claim that is the basis of subgridding

instability, because positive slope means forward waves, while negative slope means backward waves, i.e.,
the two grids have conflicting behaviors. For a plane electromagnetic wave coming from a left region 1 and

entering a right region 2, the normal incidence reflection coefficient q1;2 at the interface is given by

q1;2 ¼
1� a2;1
1þ a2;1

;

where a2;1 is the ratio of the phase velocities in regions 2 and 1, respectively. If the two media are dispersive

and medium 1 behaves like the refined grid and medium 2 like the coarse one, it would be more appropriate

to consider wave packets and group velocity. Generalizing what can be seen from Fig. 3, n values which
correspond to the maxima of the coarse grid dispersion curve and are the starting points of negative slopes

too (such as p or 3p), give rise to the following set of frequency values:

fR;q ¼
R
ps

arcsin
1

2
sin

qp
2R

� �� 
ð2Þ

read on the refined grid dispersion curve. Here, R ¼ 5; 7; 9; . . . and q takes on odd values from 1 to R� 2. At

these critical frequencies q1;2 ¼ 1 and total reflection occurs. This happens because the group velocity of

medium 2 vanishes there, but not that of medium 1 and a2;1 ¼ 0. Even worse, there are points beyond the

values given by (2) – as in the negative slope intervals ðp; 2pÞ and ð3p; 4pÞ of the n axis in Fig. 3 – at which

q1;2 becomes infinity for wave packets, because a2;1 ! �1. On the other hand if signals of interest had a

maximum frequency content well below the smallest of (2), i.e., well below f5;1 (remember we start with

R ¼ 5), spurious reflections at the grids� interface would almost be zero and instability could be avoided.

This is not the case in any practical situation, especially in the pulsed FDTD method, and even the smallest
contributions at the higher frequencies can give rise to instabilities. The following table lists numerical

values in GHz of the critical frequencies obtained from (2) when R ¼ 5; 9 and 13 and s ¼ 16:667 ps.



R n q 1 3 5 7 9 11

5 14.8 39.8 – – – –

9 14.9 43.4 67.6 84.1 – –

13 15.0 44.3 71.5 95.2 113.9 125.9
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We now proceed to a formal analysis of the numerical stability of the subgridding algorithm in the 1-D

case. To this end, use is made of the so-called normal modes, ‘‘eigenmodes’’ or, simply, Fourier modes

[10,11,20–23]. These are solutions of the form:

w‘;p ¼ j‘mp;

where ‘ and p are spatial and temporal discrete indices (pP 0), while j and m are complex numbers. Part of

the BCs employed in the subgridding algorithm consists in the time inter/extra-polation of the refined
electric field values at the grids interface. By indicating with lower/upper case letters fine/coarse quantities,

the corresponding numerical equation is

j‘mp ¼ KLN ðp�pmodRÞ=R 1



þ N � 1

R
ðpmodRÞ

�
;

where, as usual, R is the mesh refinement factor. The second term in the curly brackets represents the time

derivative used for the first order approximation, while the temporal index of the coarse grid has been

expressed by using that of the refined one. If we consider purely oscillatory 1 modes:

m ¼ e�ixs=R and N ¼ e�ixs ) N ¼ mR;

j ¼ eþikd=R and K ¼ eþikd ) K ¼ jR;

and assume that, at the grids interface, ‘ ¼ L ¼ 0, we obtain the following set of R equations, representing

the BC as a consequence of grids coupling:

m�m 1



þ m

mR � 1

R

�
¼ 1; m ¼ 0; 1; . . . ;R� 1; ð3Þ

where m stands for pmodR. Now, a fundamental result concerning the stability of numerical hyperbolic

IBVPs [11,21] prescribes that, for each m, modes entering the domain cannot fulfill the BCs which, in our
case, are given by (3). But (3) itself does not depend on j and, whichever m can be (m 6¼ 0), it always has a

solution when m ¼ 0, even for j representing an ‘‘incoming’’ 2 mode. What demonstrates the intrinsic

instability of the subgridding algorithm. The previous discussion suggests that if we were able to impose a

filtering action at the grids coupling level, such as to confine signals bandwidth well below f5;1 of (2), the

unstable behavior of the subgridding algorithm could be mitigated. The goal is to extend the number of

FDTD time iterations as long as is possible, while retaining a satisfactory accuracy in the results, by forcing

both grids to work in the linear regions of their dispersion curves. The subject of the following section is the
1 The stability criterion for IBVPs is by no means limited to j, m values on the unit circle in the complex plane. In fact, jmjP 1 (jmj > 1

implies an exponential growth with time). However, if one fails to meet the criterion for such purely oscillatory modes, instability

arises.
2 For an oscillatory mode to be ‘‘incoming’’, the relative signs of x and k from the dispersion curve, in the imaginary exponents, are

involved.
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way we employ to filter signals. However, we only apply it to the h� field components (see Section 2), what

contributes to keep low the computational burden.
4. Low-pass filtering by spatial differentiation

As stated in the previous section, we have the need to low-pass filter the h� field components involved in

our grid coupling scheme. To avoid any phase shift is a fundamental issue here, but acting in the time
domain would impose us an off-line data processing, a task obviously impossible during an FDTD run. In

fact, the complete knowledge of the signal is required if a recursive numerical filter without time delay has

to be implemented. On the contrary, by relaxing some of the constrains on the filter response such as

passband flatness, roll-off rate and maximum allowable attenuation, we devised an in-line spatial-differ-

entiation-based filtering technique – formula (5) below – which, we will demonstrate, largely improves

stability. It will be applied to every h� component before the storage of step (a) in Section 2.

We start with the following representation of a generic scalar solution U of the wave equation, as de-

scribed in [24]:

Uðr; h;/; tÞ ¼
X1
n¼0

unðh;/; t0Þ
rnþ1

; with t0 ¼ t � r
c0
; ð4Þ

where r, h, / are the spherical coordinates of a point in space and the un are real valued functions which all

depend on the shape of u0, the so-called ‘‘radiation field’’ of the pulseU [24]. Here,U stands for h�x or h
�
y or h

�
z .

Expansion (4) holds if all the sources of the electromagnetic field, acting from some definite instant of

time onwards, are confined in a bounded region around the origin r ¼ 0.

Being interested here in the frequency content of U, we analyze the spectrum of each of the numerators

in the terms of (4):

wnðh;/;xÞ ¼
Z þ1

�1
e�ixt0unðh;/; t0Þdt0; n ¼ 0; 1; 2; . . . ;

where i is the imaginary unit and the angular frequency x is the dual variable of t0. By further expanding

each of the wnðh;/;xÞ in a series of spherical harmonics:

wnðh;/;xÞ ¼
X1
‘¼0

Xþ‘

m¼�‘

an;‘;mðxÞY‘;mðh;/Þ;

with real coefficients an;‘;m that will depend only on x, it shows up that we can think atU as being composed

of a denumerable set of ‘‘plane waves’’ emanating from the origin:

an;‘;mðxÞeiðxt�krÞ;

k ¼ x=c0 being their wave number. Each of these waves is weighted by a factor depending on 1=rnþ1 and on

the direction defining angles h and /.
Now suppose we want to artificially modify the amplitudes an;‘;m of the plane waves by using an ad hoc

multiplying function FðxÞ that suppresses high frequencies. In other words we want to pass to new am-

plitudes FðxÞan;‘;mðxÞ for any given n, ‘, m. Returning back to the unðh;/; t0Þ by taking into account the

filtering function, we get

uFn ðh;/; t0Þ ¼
1

Z þ1
eixt

0
FðxÞwnðh;/;xÞdx:
2p �1
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If FðxÞ is taken to be a non-negative real valued even function of x, we introduce no phase shift at all,

while preserving the real value character of the un themselves. By expanding FðxÞ in a Taylor series at

x ¼ 0 and by making use of the well-known properties of Fourier transforms, we get

uFn ðh;/; t0Þ ¼
X1
k¼0

ð�1ÞkF2k
o2kunðh;/; t0Þ

ot02k
;

where the F2k are the Taylor coefficients of F (with F0 ¼ 1). If the t0 derivatives are made keeping r fixed,
the same result will hold for the solution Uðr; h;/; tÞ of the wave equation in (4), being now possible to

exchange the derivatives with the 1=rnþ1 factors and with the summation operators. Moreover, by the wave

equation itself, second-order time derivatives can now be replaced with the Laplacian operator c20
~r2

(followed by a c20 multiplication) as well.

As the final result, we can write approximations of the low-pass filtered field componentUFðr; h;/; tÞ, by
using the unfiltered values Uðr; h;/; tÞ of the same field component furnished at any given time step by the

FDTD algorithm itself

UFðx; y; z; tÞ ¼ Uðx; y; z; tÞ þ
X1
n¼1

ð�1ÞnF2nðc20~r2ÞnUðx; y; z; tÞ; ð5Þ

where ðc20~r2Þn indicates a repeated n-fold application of the Laplacian operator, which now can be ex-

pressed in cartesian coordinates, what is more appropriate for the FDTD formulation. Time derivatives are

intentionally avoided in (5), because they would have required values ahead in time, that have not been
calculated yet at the current FDTD time step. The spatial partial derivatives involved in (5) are all of even

order, the maximum order depending on the number of terms retained in the summation. All the partial

derivatives can be numerically implemented by second-order accurate centered difference expressions. Due

to their stencil, a mesh refinement factor of R ¼ 5 permits to retain terms up to F4 included only: higher-

order terms, if desired, require higher mesh refinement factors. In fact, one should keep in mind that, in

order to numerically implement a mixed partial derivative of order 2p, 2q, 2r with respect to the x, y, z
variables, values are required that are p, q, r space steps apart from the central location along the corre-

sponding coordinate axes, in both the positive and negative direction. As a rule R must be such that
RP 2nþ 1 for n ¼ 0; 1; 2; . . .. The filter order is expressed by 2n (n ¼ 0; 1; 2; . . .). Eq. (5) is our basic tool to
give a good stability behavior to the mesh refinement algorithm described in Section 2.

As far as the filtering function FðxÞ is concerned, we opted for a normalized to unity first kind

Chebychev polynomials expansion of an ideal low-pass filter response – which is 1 for jxj < xc and 0 for

jxj > xc, where xc � 2pfc is the cut-off (angular) frequency – and equated the coefficients of the various

powers of x with the coefficients F2n in (5). The interval of the polynomial expansion is taken on the span

½�xs;xs�, where

xs � 2pfs ¼
pR
s

is the Nyquist angular frequency limit of the refined grid and s – as usual – the time step of the coarse one.

However, due to the slow convergence rate of a polynomial expansion, fc and the ‘‘true’’ frequency half-

span f 0
s may be empirically chosen to fit the resulting filter response curve to a more convenient shape for

the purpose at hand. In the following section we will employ ideal filter response approximations by

Chebychev polynomials up to the second – i.e., up to n ¼ 1 in (5) –, fourth (up to n ¼ 2) and eighth degree
(up to n ¼ 4) as given by the curves shown in Fig. 4. For the second degree (parabolic filter) we choose

always the intercept fnull of the parabola at a frequency value of 0.25 fs. For both the other we choose

always fc ¼ 8 GHz (the vertical dashed line in the figure) and a true half-span f 0
s ¼ 0:4fs. The shape of the



Fig. 5. Ideal low-pass filter response curve approximations when R ¼ 9.

Fig. 4. Ideal low-pass filter response curve approximations when R ¼ 5.
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curves depends on s and R. Those in Fig. 4 refer to a coarse grid with s ¼ 16:667 ps and a refinement R ¼ 5

(i.e., fnull ¼ 37:5 GHz, f 0
s ¼ 60 GHz). Also, note that absolute values are reported. In Fig. 5 it is shown how

the shapes change when R ¼ 9 keeping s fixed (now fnull ¼ 67:5 GHz, f 0
s ¼ 108 GHz). Negative values of the

response curve imply a phase shift of 180�. We do not bother about this and rely indeed on the fact that the
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amplitude attenuation effect will prevail, within certain limits. Also notice that, beyond f 0
s , the higher the

polynomial degree in the Chebychev expansion, the steepest the growth of the response curve. Strictly

speaking, a filter of order greater than 4 requires smoother signals than S1ðtÞ and S2ðtÞ of Section 2 and the

greater the filter order, the smoother the signals required, with an obvious relation between the continuity

class of the pulses and the maximum order of the spatial derivatives involved by the filter. Increasing the

smoothness would imply rising further the exponents outside the square brackets in the definitions of S1ðtÞ
and S2ðtÞ in Section 2, with a corresponding increase in the frequency extension of their spectra. However,

in the Section that follows we continue to use an excitation signal like S2ðtÞ – continuous with its first four
derivatives – even though the employed filter order is 8. We rely on the fact that, being the method discrete,

singularities are smeared out and any superposed high frequency noise due to this choice will not signifi-

cantly affect the results we get.

It should be pointed out, to conclude this section, that our analysis leading to (5) strictly holds if, in the

problem at hand, all the sources of the electromagnetic field are completely contained in the fine grid. This

is indeed the case when dealing with accurate modeling of complex sources (e.g., antennas). However, in

other practical applications the above condition may not be satisfied, e.g., when subgridding is used to

embed high permittivity scatterers. If part of the sources lie outside S0, it is still possible to apply (5) with
satisfactory results concerning stability and accuracy. This will be demonstrated in the following section for

the scattering from a dielectric sphere in a plane incident wave field, the sources of which are, obviously, at

infinity. We made numerical tests for such a problem in a geometry that strongly stressed the coupling

mechanism between G and G0 obtaining, by use of (5), good results.
5. Numerical experiments with the mesh refinement algorithm

To assess the stability and accuracy of the proposed subgridding algorithm, we performed two groups of

tests. The first group concerns with the comparison, in the case of a plane TEM wave falling, along the z-
axis, on a sphere of radius 4.5 cm and er ¼ 4 (relative electric permittivity), between the numerical FDTD

solution and the analytical one at a frequency of 2.5 GHz. We obtain the analytical solution for this

electromagnetic problem by implementing the frequency-domain, summed-mode series technique of

Stratton [25]. Although the implementation requires a numerical treatment, its results can be obtained with

any desired accuracy and serve as reference values. The second group of tests concerns an elementary

electric dipole in air, oscillating at a frequency of 2.5 GHz. In the FDTD method the smallest representable
dipole is made of a single current element placed along an edge of a Yee cell and therefore is not punctiform

as the so-called ‘‘hertzian’’ dipole. A deviation of the numerical FDTD field within 5 cell off the radiating

element is therefore expected with respect to the ideal solution of the continuous case [15,26]. We consider

the electric dipole case because it represents a (primary) source for which (5) holds fully. On the other hand,

for the sphere in a plane wave field, only the dielectric structure acts as a (secondary) source for which (5)

holds: the simultaneous presence of the incident plane wave beam could perturbate, in principle, the ef-

fectiveness of formula (5). Tests were made on a coarse grid of 52� 52� 52 cubic Yee cells with d ¼ 1 cm

and s ¼ 16:667 ps. Each one of a subset of 12� 12� 12 Yee cells at the core of the previous grid was then
refined with several values of the mesh refinement factor R, starting from R ¼ 5. The dielectric spherical

structure is entirely implemented and centered on the refined part of the grid. The electric dipole, directed

along the z-axis, is centered on the refined part of the grid too and one more cell is added, along z, to both

the coarse grid and its refined subset. This is made to achieve full symmetry, because the current element,

due to the FDTD nodes spatial distribution, has to be half stepped along its direction.

To analyze the grids behavior during the FDTD runs, we introduce two quantities. The first, denoted by

S, characterizes what one would qualitatively call the ‘‘mean electric field’’ in the discrete computational

domain at a given FDTD time iteration. It is defined as
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S ¼ 1

N

X
cells

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
x þ E2

y þ E2
z

q
;

where the Ei ði ¼ x; y; zÞ are the FDTD numerical values of the electric field components in a single Yee cell

at a given time iteration and N the number of cells considered in the sum symbol. S can refer to both the
coarse (Scoarse) or the refined (Srefined) grids, with an obvious change of the Ei. For the refined grid one can

take any of the R time sub-iterations corresponding to a given FDTD time iteration (see Fig. 2). In the

graphs that follow the quantity Stotal ¼ Scoarse þ Srefined is reported, normalized to its peak value. Due to the

transitory character of the excitation, S raises to a maximum (peak) value after the start of a run, then it

should decrease and reach a stationary value which represents the residual numerical noise on the grid.

However, if instability occurs, S starts to grow uncontrollably until a numerical overflow condition is

reached. The second quantity we introduce, denoted by A, monitorizes the accuracy during the FDTD runs

A ¼ 1

N

X
cells

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jExj2 þ jEy j2 þ jEzj2

q���� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jExj2 þ jEy j2 þ jEzj2

q ����;

where the Ei ði ¼ x; y; zÞ here represent the FDTD numerical values of the electric field components in the

frequency domain, normalized to the incident field and the Ei ði ¼ x; y; zÞ are the analytical frequency do-

main values, again normalized to the incident field. These latter values are precalculated (as mentioned

above) before the FDTD run starts, stored and then loaded at runtime. Both Ei and Ei are complex valued

quantities and their absolute values have to be computed. Because the exciting signal has a limited time

duration, the semidiscrete Fourier transforms of the responses, which are continuously updated, should get,
from a given time iteration onward, no more significant contributes at all and finally represent, if no in-

stability occurs, the true response at the frequency of analysis. The Ei in the formula for A are precisely, at

any given time iteration, those partially updated responses. Therefore A measures the mean normalized

error on the grid. We calculated it for the refined part of the computational domain only.

To justify our assertion about the potential instability of every subgridding algorithm, we report – Figs.

6–8 – the amplitude spectra of a refined electric field component for mesh refinement factors R ¼ 5; 9; 13 in

the case of the dielectric sphere. These spectra were obtained by storing the FDTD time evolution values

when our spatial filtering procedure was turned off and for a number of time iterations so that instability
overwhelmed any significant signal response. We have chosen the z component of a refined electric field~e
sampled two cell apart from the S0 interface. Then a fast Fourier transform (FFT) is made on the stored

data. In each graph the amplitude spectrum is normalized to its maximum value. The details of the spectra

are unpredictable and would not have much to tell us, with the possible exception of the peaks� frequency
values. In fact, they indicate where instability originates. As can be seen, although graphs concern with the

3-D case, there is a fair match of the peaks� numbers and frequencies with what is expected in the 1-D case

(see the table of critical frequencies in Section 3). Similar results hold for R ¼ 7; 11; 15. Next we show how

the early defined quantities S and A change when, in the case of the dielectric sphere, the filtering procedure
described in Section 4 is turned on. Figs. 9–11 refer to Stotal for mesh refinement factors of 5, 7 and 9,

respectively. As can be seen, without the filter the algorithm described in Section 2 would start to become

unstable before 1000 FDTD time iterations are completed, with an exponential increase of the field values.

One should keep in mind that, when a given number of time iterations is reported on the horizontal axes,

the corresponding number of refined grid time iterations is indeed greater by a factor of R. By using the

simple second-order (parabolic) filter there is a net gain of more than 3 in the overall duration of the FDTD

run, what demonstrates the effectiveness of (5). Note in fact that, in our model of the dielectric sphere, 1000

FDTD time iterations suffice for the exciting pulse to travel a distance more than 10-fold the characteristic
length of the volume of space in which the target is embedded. Extending stability well beyond the limit of

1000 ensures that, even with more complex objects or large computational domains, the responses we are
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Fig. 7. Four peaks instability after 5100 time iterations when R ¼ 9.
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Fig. 6. Two peaks instability after 3100 time iterations when R ¼ 5.
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now able to analyze permit an accurate determination of the field distribution both inside and outside the

target. The fourth-order filter performs almost the same as the second-order one, with a small improvement

in its stability. Higher-order filters would track better the response curve of an ideal low-pass filter and with

a sharper cut-off, but their implementation suffers a number of problems. Higher-order discrete spatial
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Fig. 8. Six peaks instability after 3100 time iterations when R ¼ 13.
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Fig. 9. Preventing instability by spatial filtering when R ¼ 5.
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derivatives involve sampling points that are far apart the point they are centered on. Moreover, the higher

the polynomial degree in the Chebychev expansion, the steepest the growth beyond the interval of

approximation, which results, because of the aliasing, in a stronger anomalous amplification of high-
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Fig. 10. Preventing instability by spatial filtering when R ¼ 7.

1 500 1000 1500 2000 2500 3000
10

–4

10
0

10
4

10
8

10

no
rm

al
iz

ed
 S

to
ta

l

unfiltered
2nd order
4th  order

Fig. 11. Preventing instability by spatial filtering when R ¼ 9.
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frequency low-level noise components. On the other hand it would be an impossible task, by using poly-

nomial approximations, to have a finite passband along with an extremely large stopband while main-

taining any reasonable roll-off rate. A specific problem arises when an incident beam is modelled on the
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grid. As previously mentioned, (5) applies to fields of primary and secondary sources inside a bounded

region in the computational domain. A plane incident wave does not fall into these two categories.

Therefore the h� components used in (5) include incident field contributes that will not be really filtered. As

a result of (5) itself, such contributes will superpose noise to the field values due to even order time de-

rivatives of the excitation signal. Its influence is relevant at the higher frequencies only and increases with

the order of the filter used, because more time derivatives terms would then be present. That is the reason

why one does not expect improvements from an increase in the filter order when an external incident field is

taken into account. Fig. 12 compares the percentual accuracy A, for mesh refinement factors of 5, 7 and 9,
obtained with the fourth-order spatial filter (accuracies with the second-order filter are a little worse of

about 0.1%). The graphs in the figure correspond to those for Stotal of Figs. 9–11, respectively. As can be

seen, once the excitation has been completed, accuracies reach good stationary values that, if the sub-

gridding algorithm is stabilized, are maintained during all of the gained duration of the FDTD runs.

Moreover, as one expects, accuracy increases, although slowly, with R. The unfiltered cases are not included

in Fig. 12. When the spatial filtering is off, in fact, accuracies first reach minimum values comparable

(although a little worse) with the filtered ones then, after the excitation has been completed, errors begin to

grow exponentially like Stotal and accuracy is completely lost. What we would point out here, is the fact that
merging FDTD grids of different densities is instability error prone. Such instability is generated at well-

defined frequencies. Although the time-domain final result is a global grid numerical overflow, a stable

behavior can be imposed by suitably acting on single frequency values. The spectra in Figs. 13 and 14 –

which are the counterparts of those in Figs. 6 and 7 – show the ability of spatial filtering to keep unaltered

the significant part of the response (below 10 GHz, say), i.e., to recover stability. Being the filters� response
curve far from ideal, spurious peaks are seen in the graphs (above 10 GHz) that will ultimately prevail thus

permitting only the prolongation, although to a significative and usable extent, of the FDTD runs. Similar

results hold for other refinement values. Next, we directly compare – Figs. 15 and 16 – numerical FDTD
electric field values with the analytical ones we obtained by applying Stratton�s technique. The former are

those we calculated after the 3100 time iterations – which become 27,900 on the refined grid – of Fig. 11,
1 500 1000 1500 2000 2500 3000
2.00

3.00

4.00

pe
rc

en
tu

al
 a

cc
ur

ac
y

R = 5
R = 7
R = 9

Fig. 12. Percentual accuracy of the stabilized algorithm.
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Fig. 13. Amplitudes after 3100 time iterations when R ¼ 5.

1 10 100
10

–8

10
–6

10
–4

10
–2

10
0

no
rm

al
iz

ed
 a

m
pl

itu
de

2nd order
4th order

Fig. 14. Amplitudes after 3100 time iterations when R ¼ 9.
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with R ¼ 9 and the fourth-order spatial filter. The comparison is made along an axis parallel to the

propagation direction of the incident plane wave beam (from left to right), which we choose as the z-di-
rection, passing through the sphere�s center. This latter is located at 26 cm. The plane wave is linearly

polarized with the electric field along the x-direction. The data shown are normalized to the incident field



Fig. 15. Ex along z-axis when R ¼ 9.
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and comprise the resulting electric field components along the polarization (Ex) and propagation (Ez) di-
rections, respectively. Similar graphs, but with no subgridding, have been previously reported in the lit-

erature for validation purposes [27]. The vertical dashed lines separate the refined zone of the grid from the

coarse one. The analytical solution is indicated by line segments that join the true field component values at

the same locations of the numerical sampling points. Note that in Fig. 16, being zero the z component of the

electric field on a xz-plane passing through the center of the sphere, we report Ez along an off diameter axis

shifted 1 cm apart from that plane. As can be seen there is a very good agreement, better that the global one

suggested by Fig. 12. The major error contributions in fact, are due to the staircase approximation of the

spherical surface imposed by the FDTD method in rectangular coordinates. Also, in Fig. 16 is detectable a
discontinuity of Ez in the transition from inside to outside the dielectric sphere: it follows from the con-

tinuity of the normal component of the electric displacement vector ~D. Of the entire spatial extension of the

computational domain at our disposal, which amounts to 52 cm, only a portion of 46 cm is reported in

Figs. 15 and 16. Parts not shown correspond to scattered field zones which come from the method used to

include the primary beam. To end the discussion about the dielectric sphere case, we show in Fig. 17 the

percentual accuracy A for greater mesh refinement factors – R ¼ 11; 13 and 15 – obtained with the fourth-

order spatial filter. It should be compared with Fig. 12. As can be seen, there is a further mean accuracy

improvement due to a denser sampling points distribution, but also a shortening in the stable operation.
The maximum number of FDTD time iterations, in fact, recedes (vertical dashed line) to a value of 2600

(accuracies with the second-order spatial filter are a little worse of about 0.1 and with a larger shortening of

about 300). That value, however, now corresponds to 28,600, 33,800 and 39,000 overall time iterations,

respectively, on the refined grid. No doubt, our spatial filtering technique demonstrates its effectiveness in

preventing and/or mildening error accumulation over a large number of cycles of a FDTD subgridding

algorithm. Fig. 18 refers to Stotal for R ¼ 15 and is the analogous of Figs. 9–11. As can be seen, when the

spatial filter is turned on there is still a net gain of more than 3 in the overall duration of the FDTD run.

The fourth-order spatial filter performs better than the second-order one, because the former has a better
coverage of the stopband of an ideal low-pass filter. Raising further the order, however, is not recom-



Fig. 16. Ez along z-axis when R ¼ 9.

Fig. 17. Percentual accuracy of the stabilized algorithm.
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mended in the case of an external primary beam. At the cost of a larger number of floating point operations

in fact, there is no performance gain. This is due to the presence of the incident field, as explained above.

Our numerical results with the sixth and eighth-order spatial filters, which we do not report here, confirm

this circumstance.
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Fig. 18. Preventing instability by spatial filtering when R ¼ 15.
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Fig. 19. Preventing instability when R ¼ 5. Electric dipole case.

A. Vaccari et al. / Journal of Computational Physics 194 (2004) 117–139 137
We end this section by discussing briefly the results for the elementary electric dipole. Fig. 19 refers to

R ¼ 5 with the second- and fourth-order spatial filters. As can be seen, both filters perform almost the same

in preventing instability and there is a fourfold gain in the overall number of FDTD time iterations. Fig. 20
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Fig. 20. Preventing instability when R ¼ 9. Electric dipole case.
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shows that, raising the refinement to R ¼ 9, only the eighth-order filer – which cannot be employed with

lower values of R – is able to prevent instability until a fourfold gain in the overall number of FDTD time
iterations has been reached. The second- and fourth-order ones would have stopped at about 1500 itera-

tions (which are 13,500 for the fine grid). With R ¼ 15, the eighth-order filter, for which we do not report

graphs, is only able to double the overall duration of the FDTD run and one should resort to stronger

filters.
6. Summary

In this paper we have described a subgridding algorithm for the original Yee formulation of the 3-D

finite-difference time-domain (FDTD) solution method of Maxwell�s equations. Our goal is to keep the

overall computational cost as low as possible. The subgridding algorithm here proposed is based on a

convenient coupling scheme between the original coarse mesh and the embedded refined one, which

minimizes memory allocation and computing times, while allowing the use of the longest admissible time

step in each grid of the spatial domain. We demonstrate that mesh refinement renders unstable the FDTD

method, due to the presence of high frequency components that are incompatible with the grids� dispersion
properties. Therefore, to make our subgridding algorithm robust, we supplement it with a low-pass filtering
technique which makes use of a spatial differentiation of the field values involved in the grids� coupling. By
using it we achieve, as the numerical experiments demonstrate, the following advantages: (1) to prolong to a

large extent the overall number of FDTD time iterations, thus permitting computations with large space

domains and/or complex structures, a desired feature in view of the code parallelization; (2) to straightly

embed high resolution meshes into a coarse one, thus avoiding the recursive use of multiple nested grids

with a progressively increasing resolution (an approach that is currently employed and that rises the

computational burden). Our filtering technique does not require extra memory allocation and, in principle,

it is usable even with more accurate FDTD formulations other than the Yee one (which we do not consider
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in the paper because of their computational cost). Extra times, due to an additional small number of

floating point operations, depend on the strengthness of the filtering action, which is adjustable and related

to the approximation of an ideal low-pass filter response. The more the terms retained in the approxi-

mation, the more effective the beneficial action on the stability, even though highest-order filters do not

involve a proportional improvement, especially when fields from sources outside the computational domain

are modelled.
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